Search results for "Extracellular Space"

showing 10 items of 71 documents

Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP.

2017

Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5')P5(5')A were performed. We found that ADP formation in the extracellular …

0301 basic medicineAdenylate kinaseBiologydigestive systemExocytosisCatalysisCell membrane03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAdenosine TriphosphatePolyphosphatesExtracellularmedicineTumor Cells CulturedHumansPhosphorylationchemistry.chemical_classificationATP synthasePolyphosphateAdenylate KinaseCell BiologyAlkaline PhosphataseAdenosine DiphosphateKinetics030104 developmental biologyEnzymemedicine.anatomical_structurechemistryBiochemistry030220 oncology & carcinogenesisbiology.proteinEnergy sourceEnergy MetabolismExtracellular SpaceJournal of cell science
researchProduct

Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation…

2018

Trafficking of glutamate, glutamine and GABA between astrocytes and neurons is essential to maintain proper neurotransmission. Chronic hyperammonemia alters neurotransmission and cognitive function. The aims of this work were to analyze in cerebellum of rats the effects of chronic hyperammonemia on: a) extracellular glutamate, glutamine and GABA concentrations; b) membrane expression of glutamate, glutamine and GABA transporters; c) how they are modulated by extracellular cGMP. Hyperammonemic rats show increased levels of extracellular glutamate, glutamine, GABA and citrulline in cerebellum in vivo. Hyperammonemic rats show: a) increased membrane expression of the astrocytic glutamine trans…

0301 basic medicineNeurotransmitter transporterMaleGlutamineGlutamate-glutamine cycleGlutamic AcidNeurotransmissionSynaptic Transmission03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCerebellumNeurotransmitter Transport ProteinsmedicineExtracellularGABA transporterAnimalsHyperammonemiaRats WistarCyclic GMPgamma-Aminobutyric AcidPharmacologybiologyChemistryCell MembraneGlutamate receptorHyperammonemiamedicine.diseaseCell biologyRatsGlutamine030104 developmental biologynervous systembiology.proteinCitrullineExtracellular Space030217 neurology & neurosurgeryNeuropharmacology
researchProduct

Introducing the concept of “CSF-shift edema” in traumatic brain injury

2018

Brain edema after severe traumatic brain injury (TBI) plays an important role in the outcome and survival of injured patients. It is also one of the main targets in the therapeutic approach in the current clinical practice. To date, the pathophysiology of traumatic brain swelling is complex and, being that it is thought to be mainly cytotoxic and vasogenic in origin, not yet entirely understood. However, based on new understandings of the hydrodynamic aspects of cerebrospinal fluid (CSF), an additional mechanism of brain swelling can be considered. An increase in pressure into the subarachnoid space, secondary to traumatic subarachnoid hemorrhage, would result in a rapid shift of CSF from t…

0301 basic medicinePathologymedicine.medical_specialtySubarachnoid hemorrhageTraumatic brain injurybrain edema; cisternostomy; decompressive hemicraniectomy; paravascular pathway; traumatic brain injury; Cellular and Molecular NeuroscienceBrain water03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineCerebrospinal fluidEdemaBrain Injuries TraumaticmedicineHumansparavascular pathwaybrain edemaBrain edemabusiness.industrytraumatic brain injurymedicine.diseasecisternostomyPathophysiology030104 developmental biologymedicine.anatomical_structureSubarachnoid spacemedicine.symptomExtracellular Spacebusinessdecompressive hemicraniectomybrain edema; cisternostomy; decompressive hemicraniectomy; paravascular pathway; traumatic brain injury030217 neurology & neurosurgeryJournal of Neuroscience Research
researchProduct

E2F1 interacts with BCL-xL and regulates its subcellular localization dynamics to trigger cell death

2018

International audience; E2F1 is the main pro-apoptotic effector of the pRB-regulated tumor suppressor pathway by promoting the transcription of various pro-apoptotic proteins. We report here that E2F1 partly localizes to mitochondria, where it favors mitochondrial outer membrane permeabilization. E2F1 interacts with BCL-xL independently from its BH3 binding interface and induces a stabilization of BCL-xL at mitochondrial membranes. This prevents efficient control of BCL-xL over its binding partners, in particular over BAK resulting in the induction of cell death. We thus identify a new, non-BH3-binding regulator of BCL-xL localization dynamics that influences its anti-apoptotic activity.

0301 basic medicineProgrammed cell deathTranscription Geneticbcl-X ProteinRegulatorBcl-xL[SDV.CAN]Life Sciences [q-bio]/CancerBCL-xL mobilityMitochondrionBiochemistrylaw.invention[ SDV.CAN ] Life Sciences [q-bio]/CancerE2F1 Subject Category Autophagy & Cell Death03 medical and health sciences[SDV.CAN] Life Sciences [q-bio]/CancerlawBCL-2 familyCell Line TumorGeneticsJournal ArticleHumansE2F1Molecular BiologyCell DeathbiologyManchester Cancer Research CentreEffectorChemistryResearchInstitutes_Networks_Beacons/mcrcScientific ReportsapoptosisSubcellular localizationMitochondriaCell biologyProtein Transportbcl-2 Homologous Antagonist-Killer Protein030104 developmental biologyGene Expression RegulationProto-Oncogene Proteins c-bcl-2biology.proteinSuppressorbiological phenomena cell phenomena and immunityExtracellular SpaceE2F1 Transcription FactorProtein Binding
researchProduct

Phosphorylation of meprin β controls its cell surface abundance and subsequently diminishes ectodomain shedding

2021

Meprin β is a zinc-dependent metalloprotease exhibiting a unique cleavage specificity with strong preference for acidic amino acids at the cleavage site. Proteomic studies revealed a diverse substrate pool of meprin β including the interleukin-6 receptor (IL-6R) and the amyloid precursor protein (APP). Dysregulation of meprin β is often associated with pathological conditions such as chronic inflammation, fibrosis, or Alzheimer's disease (AD). The extracellular regulation of meprin β including interactors, sheddases, and activators has been intensively investigated while intracellular regulation has been barely addressed in the literature. This study aimed to analyze C-terminal phosphorylat…

0301 basic medicineProtein Kinase C-alphaImmunoprecipitationmedia_common.quotation_subjectBiochemistry03 medical and health sciences0302 clinical medicineProtein Kinase C betaTumor Cells CulturedGeneticsAmyloid precursor proteinHumansPhosphorylationInternalizationMolecular BiologyProtein kinase Cmedia_commonbiologyChemistryCell MembraneMetalloendopeptidasesSheddaseCell biology030104 developmental biologyGene Expression RegulationEctodomainColonic NeoplasmsProteolysisbiology.proteinPhosphorylationExtracellular Space030217 neurology & neurosurgeryIntracellularBiotechnologyThe FASEB Journal
researchProduct

Extracellular Superoxide Dismutase Expression in Papillary Thyroid Cancer Mesenchymal Stem/Stromal Cells Modulates Cancer Cell Growth and Migration

2017

AbstractTumor stroma-secreted growth factors, cytokines, and reactive oxygen species (ROS) influence tumor development from early stages to the metastasis phase. Previous studies have demonstrated downregulation of ROS-producing extracellular superoxide dismutase (SOD3) in thyroid cancer cell lines although according to recent data, the expression of SOD3 at physiological levels stimulates normal and cancer cell proliferation. Therefore, to analyze the expression of SOD3 in tumor stroma, we characterized stromal cells from the thyroid. We report mutually exclusive desmoplasia and inflammation in papillary and follicular thyroid cancers and the presence of multipotent mesenchymal stem/stroma…

0301 basic medicineendocrine systemPathologymedicine.medical_specialtyStromal cellendocrine system diseasesThyroid GlandBiologyArticleMetastasisPapillary thyroid cancer03 medical and health sciences0302 clinical medicineCell MovementExtracellular ;Thyroid ;Cancer ;Cell .Adenocarcinoma FollicularParacrine CommunicationBiomarkers TumormedicineHumansThyroid NeoplasmsThyroid cancerCell ProliferationMultidisciplinarySuperoxide DismutaseMesenchymal stem cellThyroidEpithelial CellsMesenchymal Stem Cellsmedicine.diseaseFibrosisCarcinoma PapillaryDesmoplasiaGene Expression Regulation NeoplasticPhenotype030104 developmental biologymedicine.anatomical_structureThyroid Cancer Papillary030220 oncology & carcinogenesisCancer cellmedicine.symptomExtracellular SpaceScientific Reports
researchProduct

CD73-generated extracellular adenosine in chronic lymphocytic leukemia creates local conditions counteracting drug-induced cell death

2011

Abstract Extracellular adenosine (ADO), generated from ATP or ADP through the concerted action of the ectoenzymes CD39 and CD73, elicits autocrine and paracrine effects mediated by type 1 purinergic receptors. We have tested whether the expression of CD39 and CD73 by chronic lymphocytic leukemia (CLL) cells activates an adenosinergic axis affecting growth and survival. By immunohistochemistry, CD39 is widely expressed in CLL lymph nodes, whereas CD73 is restricted to proliferation centers. CD73 expression is highest on Ki-67+ CLL cells, adjacent to T lymphocytes, and is further localized to perivascular areas. CD39+/CD73+ CLL cells generate ADO from ADP in a time- and concentration-dependen…

AdenosineCellular differentiationChronic lymphocytic leukemia5'-Nucleotidase; Adenosine; Adenosine Diphosphate; Adenosine Triphosphate; Antigens CD; Antineoplastic Agents Phytogenic; Apyrase; Autocrine Communication; Cell Death; Cell Differentiation; Cell Movement; Cell Survival; Etoposide; Extracellular Space; GPI-Linked Proteins; Humans; Leukemia Lymphocytic Chronic B-Cell; Paracrine Communication; Receptor Adenosine A2A; Tumor Cells Cultured; Biochemistry; Immunology; Hematology; Cell BiologyMICROENVIRONMENTCD38BiochemistryACTIVATIONAdenosine TriphosphateCell MovementPhytogenichemic and lymphatic diseasesTumor Cells CulturedChronic5'-NucleotidaseEtoposideLeukemiaCulturedCell DeathTUMOR-GROWTHApyrasePurinergic receptorCell DifferentiationHematologyLymphocyticCDTumor CellsCell biologyAdenosine DiphosphateAutocrine CommunicationLeukemiaReceptorIMMUNE SUPPRESSIONReceptor Adenosine A2ACell SurvivalImmunologyAntineoplastic AgentsAdenosinergicBiologyGPI-Linked ProteinsDAMAGE-INDUCED APOPTOSISAdenosine A2AParacrine signallingAntigens CDParacrine CommunicationmedicineHumansAntigensAutocrine signallingImmunobiologyB-CellCell BiologyDAMAGE-INDUCED APOPTOSIS; T-CELLS; IMMUNE SUPPRESSION; ZAP-70 EXPRESSION; TUMOR-GROWTH; RECEPTOR; CD73; ACTIVATION; CD38; MICROENVIRONMENTmedicine.diseaseAntineoplastic Agents PhytogenicLeukemia Lymphocytic Chronic B-CellSettore MED/15 - MALATTIE DEL SANGUET-CELLSCD73Extracellular SpaceZAP-70 EXPRESSIONCD38Blood
researchProduct

Impaired plasma nitric oxide availability and extracellular superoxide dismutase activity in healthy humans with advancing age

2006

This study is aimed to verify the modifications of extracellular superoxide dismutase (EC-SOD) activity and its potential involvement on the mechanism responsible for the impairment of plasma nitric oxide (NO) availability occurring with advancing age in healthy humans. For this purpose, plasma samples were drawn from 40 healthy men, aged 20-92 years, in fasting state and used for measurements of stable end-product nitrite/nitrate (NOx), as expression of NO availability, EC-SOD activity, thiobarbituric acid reactive substances (TBARS) as marker of lipid peroxidation, Trolox equivalent antioxidant capacity (TEAC) as a measure of plasma total antioxidant capacity, and in vitro susceptibility …

AdultMaleAgingmedicine.medical_specialtyAntioxidantThiobarbituric acidextracellular superoxide dismutasemedicine.medical_treatmentTrolox equivalent antioxidant capacitymedicine.disease_causeAntioxidantsGeneral Biochemistry Genetics and Molecular BiologyNitric oxideLipid peroxidationchemistry.chemical_compoundNitric oxide Extracellular superoxide dismutase ; Oxidative stress; Advancing ageadvancing agenitric oxideInternal medicinemedicineTBARSAnimalsHumansoxidative stressGeneral Pharmacology Toxicology and PharmaceuticsAgedAged 80 and overSuperoxide DismutaseFastingGeneral MedicineMiddle AgedLipidsEndocrinologychemistryBiochemistryLow-density lipoproteinLipid PeroxidationExtracellular SpaceOxidative stressLife Sciences
researchProduct

Age-related accumulation of congophilic fibrillar inclusions in endocrine cells

1991

Intracellular fibrillar congophilic inclusions are well known as neurofibrillary tangles in neurons and as Biondi bodies in choroid plexus epithelial cells. Recently similar amyloid-like inclusions in adrenal cortical cells were described (Eriksson and Westermark 1990). This study on 150 adrenal glands confirms these observations. In our material the age-related accumulation of congophilic inclusions starts earlier (in the sixth decade) and reaches a higher incidence (42.7%). We found similar intracellular inclusions in other endocrine organs, for example in the anterior lobe of the pituitary, in the cells of parathyroid glands and in Sertoli cells. The age-related incidence of these fibril…

AgingAmyloidPituitary glandmedicine.medical_specialtyPathologyEnteroendocrine cellBiologyTesticlePathology and Forensic MedicineEndocrine GlandsInternal medicineAdrenal GlandsmedicineHumansEndocrine systemMolecular BiologyBrain ChemistryAdrenal glandCongo RedCell BiologyGeneral MedicineSertoli cellmedicine.anatomical_structureEndocrinologyPituitary GlandChoroid PlexusNeurofibrilsChoroid plexusExtracellular SpaceEndocrine glandVirchows Archiv A Pathological Anatomy and Histopathology
researchProduct

Biochemical evidence that the atypical antipsychotic drugs clozapine and risperidone block 5-HT(2C) receptors in vivo.

2002

Clozapine and risperidone are two atypical antipsychotic drugs which bind, among other receptors, to 5-HT(2C) receptor subtypes. They inhibit the basal inositol phosphate production in mammalian cells expressing rat or human 5-HT(2C) receptors. This biochemical effect is indicative of inverse agonist activity at these receptors. There is evidence that 5-HT(2C) receptors are involved in the control of the activity of central dopaminergic system. Therefore, the effects of clozapine (5 mg/kg ip), risperidone (0.08 mg/kg ip) and of the typical antipsychotic haloperidol (0.1 mg/kg ip) were studied on the extracellular concentration of dopamine (DA) in the nucleus accumbens of chloral hydrate-ane…

AgonistMalemedicine.medical_specialtymedicine.drug_classDopamineMicrodialysisClinical BiochemistryAtypical antipsychoticPharmacologyToxicologyBiochemistryNucleus AccumbensRats Sprague-DawleyBehavioral NeuroscienceInternal medicinemedicineHaloperidolElectrochemistryReceptor Serotonin 5-HT2CAnimalsReceptorClozapineBiological Psychiatry5-HT receptorClozapineChromatography High Pressure LiquidPharmacologyRisperidoneChemistryRisperidoneTypical antipsychoticRatsEndocrinologyReceptors SerotoninHaloperidolSerotonin AntagonistsExtracellular Spacemedicine.drugAntipsychotic AgentsPharmacology, biochemistry, and behavior
researchProduct